A New Fast Method of Profile and Wave- Front Reduction for Cylindrical Struc- Tures in Finite Elements Method Analysis
نویسندگان
چکیده
We present a new accurate node’s renumbering method for minimizing the profile of stiffness matrix arising in finite elements problems. This method is suitable for cylindrical structures like electrical rotating machines and is especially intended for movement consideration by the moving band method. The structure is divided into sectors classified in a special way. The nodes contained in each sector are classified according to their radius value in regressing order. We show that the performances of the method are better than the most popular ones proposed in the literature. Application for a permanent magnet synchronous machine is presented. Application for finite elements analysis of a permanent synchronous machine in motion is achieved. Received 7 November 2010, Accepted 21 December 2010, Scheduled 3 January 2011 Corresponding author: Youcef Boutora ([email protected]).
منابع مشابه
A Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers
In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملWave Motion and Stop-Bands in Pipes with Helical Characteristics Using Wave Finite Element Analysis
Pipes are widely used in many industrial and mechanical applications and devices. Although there are many different constructions according to the specific application and device, these can show helical pattern, such as spiral pipes, wire-reinforced pipes/shells, spring-suspension, and so on. Theoretical modelling of wave propagation provides a prediction about the dynamic behavior, and it is f...
متن کاملAxisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کاملA New Approach to Buckling Analysis of Lattice Composite Structures
Buckling strength of composite latticed cylindrical shells is one of the important parameters for studying the failure of these structures. In this paper, new governing differential equations are derived for latticed cylindrical shells and their critical buckling axial loads. The nested structure under compressive axial buckling load was analyzed. Finite Element Method (FEM) was applied to mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011